数学--数论--莫比乌斯函数

定义:
默比乌斯函数或缪比乌斯函数是指以下的函数 :
μ ( n ) = { 1    若n=1 ; ( − 1 ) k     若 n 无 平 方 因 子 数 , 且 n = p 1 ∗ p 2 . . . . ∗ p k ; 0     若 n 有 平 方 因 子 数 μ(n)= \left\{ \begin{aligned} 1& \ \ \ \text{若n=1};\\ (-1)^k& \ \ \ 若n无平方因子数,且n=p_1*p_2....*p_k ;\\ 0& \ \ \ 若n有平方因子数 \end{aligned} \right. μ(n)=1(1)k0   n=1;   nn=p1p2....pk;   n

性质:
我们之前就提到过,莫比乌斯是积性函数,必然满足积性函数的性质
积性函数
性质1:
在这里插入图片描述
性质2:
在这里插入图片描述
莫比乌斯函数值求法:
1.单个函数值:

#include <iostream>
 
using namespace std;
typedef long long ll;
//计算a是否可以mod b
int MOD(int a,int b)
{
    return a-a/b*b;
}
 
//计算莫比乌斯函数
//如果一个数包含平方因子,那么miu(n)=0
//如果哟个数不包含平方因子,且有k个不同的质因子,那么miu(n)=(-1)^k
 
int miu(int n)
{
    int cnt,k=0;
    for(int i=2;i*i<n;i++)
    {
        if(MOD(n,i))
        {
            continue;
        }
        cnt=0;
        k++;
        while(MOD(n,i)==0)
        {
            n/=i;
            cnt++;
        }
        if(cnt>=2)
        {
            return 0;
        }
 
    }
    if(n!=1)
    {
        k++;
    }
    return MOD(k,2)?-1:1;
}
 
int main()
{
    ll n;
    cin>>n;
    cout<<miu(n)<<endl;
    return 0;
}

2.线性筛:

/*
 *  莫比乌斯反演公式
 *  线性筛法求解积性函数(莫比乌斯函数)
 */
const int MAXN = 1000000;
bool check[MAXN + 10];
int prime[MAXN + 10];
int mu[MAXN + 10];
 
void Moblus()
{
    memset(check, false, sizeof(check));
    mu[1] = 1;
    int tot = 0;
    for (int i = 2; i <= MAXN; i++)
    {
        if (!check[i])
        {
            prime[tot++] = i;
            mu[i] = -1;
        }
        for (int j = 0; j < tot; j++)
        {
            if (i * prime[j] > MAXN)
            {
                break;
            }
            check[i * prime[j]] = true;
            if (i % prime[j] == 0)
            {
                mu[i * prime[j]] = 0;
                break;
            }
            else
            {
                mu[i * prime[j]] = -mu[i];
            }
        }
    }
}
风骨散人Chiam CSDN认证博客专家 拖更专业户????
大学僧,考研狗,没上岸,ACM退役选手。
名字的含义:希望可以通过努力,能力让家人拥有富足的生活而不是为了生计而到处奔波。“世人慌慌张张,不过是图碎银几两。偏偏这碎银几两,能解世间惆怅,可让父母安康,可护幼子成长 …”Chiam是 -am爱 China中国
文章主要内容:
Python,C++,C语言,JAVA,C#等语言的教程,
ACM题解、模板、算法等,主要是数据结构,数学和图论
设计模式,数据库,计算机网络,操作系统,计算机组成原理,Python爬虫、深度学习、机器学学习,
计算机系408考研的所有专业课内容。
目前还在更新中,博客园,微信公众号同名“风骨散人”,关注公众号可获软件大礼包
相关推荐
©️2020 CSDN 皮肤主题: 护眼 设计师:闪电赇 返回首页